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finite-dimensional Hilbert space and their properties
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Abstract. We have considered a harmonic oscillator in a finite-dimensional Hilbert space
spanned by orthogonal polynomials of a discrete variable and constructed coherent states as
well as even and odd coherent states of this oscillator. Various properties such as squeezing and
antibunching of these states have also been examined.

1. Introduction

Recently, much attention has been paid to the investigation of quantum systems in finite-
dimensional Hilbert space. These quantum systems can be associated with spin systems,
several-level atoms in quantum optics, electrons on molecules with a finite number of sites
etc. Recently they have also been used for the construction of a hermitian phase operator in
quantum mechanics (Pegg–Barnett formalism) [1–4]. Finite-dimensional quantum systems
are also of great interest because of their connection to quantum cryptography [5], quantum
teleportation and superdense coding [6] and the quantum computation [7].

In the Pegg–Barnett formalism the finite-dimensional states are constructed from the
eigenstates of an oscillator in a finite-dimensional Hilbert space. This finite-dimensional
oscillator is characterized by the following relations [1–4]:

a|0〉 = a†|N〉 = 0

a|n〉 = √n|n− 1〉
a†|n〉 = √n+ 1|n+ 1〉
[a, a†] = 1− (N + 1)|N〉〈N |

(1)

(N + 1) being the dimension of the Hilbert space.
Subsequently, many authors have studied the construction of coherent states defined

in finite-dimensional Hilbert space. One definition was proposed by Buzeket al [8] and
studied further by Miranowiczet al [9, 10]. Another definition was proposed by Kuanget al
[11]. The various nonclassical properties of these finite-dimensional coherent states were
studied by many authors [10, 12] and the various approaches were also compared [13].

At this point we note that the oscillator algebra defined in (1) is not a closed one and
also a specific coordinate realization of the various operators appearing in (1) has not been
found so far. This has motivated us to search for a suitable algebra which has a specific
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coordinate realization and which in the limit of largeN becomes the standard harmonic
oscillator algebra. In this case we shall use the formalism due to Atakishievet al [14]. It
will be seen that the oscillator algebra is related to theSU(2) algebra and can be realized
in the space of Kravchuk polynomials (which are orthogonal polynomials of a discrete
variable). Coherent states, in the manner of Perelomov [15], will then be constructed and
we shall examine various nonclassical properties of these coherent states. Subsequently we
shall also construct and study nonclassical properties of the even and odd superpositions of
two finite-dimensional coherent states [16]. It will be shown that the squeezing behaviour
of the even and odd coherent states in finite dimensions is nontrivially different from those
of the usual harmonic oscillator even though it approaches the latter as the dimension of
the Hilbert space tends to infinity.

In this context it may be noted that finite-dimensional number states and coherent states
are not merely mathematical tools but are useful in certain situations. To illustrate this [17]
consider a quantum state of lightψ so that the corresponding photon number distribution
function ispn = |〈n|ψ〉|2. In high-Q cavities [18], where cavity losses are very small, the
probability pn can be taken to be arbitrarily small beyond a thresholdn > N in certain
situations. In this event the photon Hilbert space can be taken to be spanned by the states
|0〉, |1〉, . . . , |N〉. Theses states can be regarded as finite-dimensional number states and
the coherent states constructed by the superposition of these states as the finite-dimensional
coherent states. Finite dimensional coherent states can also occur in other situations as well.
In a recent paper, Leonski [19] discussed generation of finite-dimensional coherent states in
a system comprising a nonlinear medium ofkth order driven by a weak external field. At
this point we would however like to mention that this paper should be viewed as an attempt
to provide a theoretical framework for finite-dimensional number states, coherent states and
superpositions of the latter.

The organization of the paper is as follows. In section 2 we present the formalism
concerning the finite-dimensional oscillator; in section 3 we construct the coherent states
and study their nonclassical properties; in section 4 we construct the even and odd coherent
states and examine their squeezing and antibunching properties; section 5 is devoted to a
discussion and finally in the appendix we list some useful results used in the main body of
the paper.

2. Harmonic oscillator in a finite-dimensional Hilbert space

In this section we shall briefly describe the formalism due to Atakishievet al [14] concerning
finite-dimensional oscillators. Let us consider a(N +1) dimensional Hilbert space spanned
by the states|0〉, |1〉, . . . , |N〉 such that

8N
n (ξ) = 〈ξ |n〉 = d−1

n K(p)
n (pN + h−1ξ,N)ρ1/2(pN + h−1ξ) (2)

where 06 n 6 N , h−1 = √2pqN , −pN 6 h−1ξ 6 qN , p + q = 1. In (2) Kp
n (x,N)

stands for Kravchuk polynomials of degreen [20, 21] whiledn andρ(x) are the norm and
the weight function [20, 21] corresponding to it. It may be noted that Kravchuk polynomials
are polynomials of a discrete variable and they are orthogonal with respect to the binomial
distribution as the weight function. Also forn > N we have8N

n = 0 and orthogonality of
the Kravchuk polynomials implies

〈m|n〉 =
N∑
i=0

8(N)
m (ξi)8

(N)
n (ξi) = δmn

m, n = 0, 1, 2, . . . , N : ξi = (i − pN)h.
(3)
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Furthermore for fixedp, if N →∞, h→ 0 we have [20, 21]

lim
N→∞

√
2

pqN
K(p)
n

(
pN +

√
2pqNξ

)
= 1

n!
Hn(ξ) (4)

lim
N→∞

√
2pqNρ

(
pN +

√
2pqNξ

)
= 1√

π
e−ξ

2
(5)

whereHn(ξ) denotes the Hermite polynomial of degreen. Because of the properties (4) and
(5) the functions8(N)

n (ξ) become the wavefunctions of the infinite-dimensional oscillator
as the dimension of the Hilbert space tends to infinity.

Let us now consider an operatorH(N) defined by

H(N) = 2pqN + 1
2 + (q − p)s −

√
pq[f (s)e∂s + e−∂sf (s)] (6)

wheref (s) = √(qN − s)(pN + s + 1), s = ξ

h
and∂s = d/ds. Now using the recurrence

relation for the Kravchuk polynomials it can be shown that

HN8(N)
n (ξ) = (n+ 1

2)8
N
n (ξ) n = 0, 1, . . . N (7)

or symbolically

H(N)|n〉 = (n+ 1
2)|n〉 n = 0, 1, . . . N. (8)

From (8) it follows that the operatorH(N) has a truncated spectrum consisting of(N + 1)
eigenvalues and the eigenvalues are the same as the harmonic oscillator eigenvalues. Thus
H(N) can be regarded as the Hamiltonian of the finite-dimensional oscillator.

Next we consider the operatorsA andA† defined by

A = √pq[(p − q)N + 2s] + qf (s)e∂s − pe−∂s f (s) (9)

A† = √pq[(p − q)N + 2s] + qe−∂s f (s)− pf (s)e∂s (10)

and it can be shown thatA, A† andH(N) satisfy the following closed algebra:

[H(N), A] = −A [H(N), A†] = A† [A,A†] = 1+N − 2H(N). (11)

It is not difficult to identify the algebra in (11) as the one related to theSU(2) algebra.
Also using (4) and (5) it can be shown that asN → ∞, equation (7) turns into the
eigenvalue equation of a standard harmonic oscillator and the algebra (11) becomes, by
group contraction, the Heisenberg–Weyl algebra. The action of the operatorsA andA† on
the eigenstates8(N)

n (ξ) are given by

A8
(N)

0 = A†8(N)
N = 0 (12)

A8(N)
n = χ(N)n 8

(N)

n−1 (13)

A†8(N)
n = χ(N)n+18

(N)

n+1 (14)

whereχ(N)n = √n(N − n+ 1).
In terms of the kets the above relations read

A|0〉 = A†|N〉 = 0 (15)

A|n〉 = χNn |n− 1〉 (16)

A†|n〉 = χ(N)n+1|n+ 1〉. (17)

ThusA andA† can be interpreted as the annihilation and creation operators and we have a
finite-dimensional oscillator system which has exactly(N + 1) levels and which becomes
a standard harmonic oscillator asN →∞. In the next section we shall construct coherent
states corresponding to this system and study their properties.
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3. Coherent states of the finite-dimensional oscillator and their properties

Coherent staes in finite dimensions are usually constructed following either Glauber’s
approach [8–10] or the truncation procedure [11, 12]. Buzeket al [8] used the former
approach to study finite-dimensional coherent states and later analytical solutions were
found by Miranowiczet al [9, 10]. On the other hand the truncation procedure was used by
Kuanget al [11, 12] to construct finite-dimensional coherent states. Subsequently Opatrny
et al [13] made a comparative study of the two procedures.

In this section we shall study nonclassical properties of finite-dimensional coherent
states constructed using the operatorsA† andA. Because of the relation (11) we can make
use of the formalism of constructing spin coherent states [22–24] and the finite-dimensional
coherent states are defined by

|µ〉 = exp(µA† − µ∗A)|0〉
= (1+ |µ|2)−N/2 exp(µA+)|0〉

= (1+ |µ|2)−N/2
N∑
n=0

√
NCnµ

n|n〉 (18)

whereµ denotes a complex number. It can be shown that the coherent states in (18) have
properties such as completeness, resolution of unity etc [15, 22–24]. Also scalingA and
µ by

√
NA and µ√

N
respectively and proceeding to the limitN →∞ we can recover the

standard harmonic oscillator coherent states from (18).
It may be pointed out that difference between finite-dimensional coherent states

considered here and those in [8–12] essentially lies in the choice of the weights associated
with the states|n〉 in the sum in (18) (which in turn is due to the different behaviour of
the states under the action of the raising and lowering operators). Also in the functional
representation the coherent states in (18) can be written as

ψµ(x) = (1+ |µ|2)− N
2

N∑
n=0

√
NCnµ

n8N
n (x) (19)

where8N
n (x) are given by (2). It may be noted that in the case of spin coherent states the

r.h.s. of (19) would have contained spherical harmonics [23] instead of8N
n (x).

To study the nonclassical behaviour of the coherent states we now introduce quadrature
operatorsX andP in the following way:

X = A† + A
2

P = A− A†
2i

. (20)

Let us now examine quadrature squeezing and antibunching properties of the coherent states.
In general for any two operatorsA andB the squeezing condition is given by

SA < 0 or SB < 0 (21)

whereSA is given by

SA = 2〈µ|A2|µ〉 − 2〈µ|A|µ〉2− |〈µ|[A,B]|µ〉|2
|〈µ|[A,B]|µ〉|2 (22)

and a similar definition forSB . On the other hand the condition for the antibunching effect
to take place is given by

gA = 〈µ|A
†2A2|µ〉

|〈µ|A†A|µ〉|2 < 1. (23)
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Now parametrizingµ asµ = reiθ and using (15)–(17) and (19) we find

SP < 0⇒ 1+ r4− 2r2 cos 2θ

(1+ r2)
< |1− r2| (24)

SX < 0⇒ 1+ r4+ 2r2 cos 2θ

(1+ r2)
< |1− r2|. (25)

From the above inequalities we find that squeezing takes place if

cos 2θ > r2 or cos 2θ < −r2 if r < 1 (26)

and

cos 2θ >
1

r2
or cos 2θ < − 1

r2
if r > 1. (27)

Clearly each of the above inequalities can be satisfied seperately and thus we conclude that
the coherent states exhibit quadrature squeezing.

Let us now proceed to examine amplitude-squared squeezing. To this end we consider
the following operators:

Y1 = A2+ A†2
2

Y2 = A2− A†2
2

. (28)

As before we find from (21) that

SY1 < 0⇒ 1

(1+ r2)
2 [(N − 2)(N − 3)(r8+ r4+ 2r4 cos 4θ)− 4N(N − 1)r4 cos2 2θ ]

+2(N − 2)

(1+ r2)
[2r2−N(N − 1)r6] + [N(N − 1)r4+ 2]

<

∣∣∣∣ 1

(1+ r2)
2 (N − 2)(N − 3)(r4− r8)

+2(N − 2)

(1+ r2)
[2r2+ (N − 1)r6] + [2−N(N − 1)r4]

∣∣∣∣. (29)

Similarly

SY2 < 0⇒ 1

(1+ r2)
2 [(N − 2)(N − 3)(r8+ r4− 2r4 cos 4θ)− 4N(N − 1)r4 sin2 2θ ]

+2(N − 2)

(1+ r2)
[2r2−N(N − 1)r6] + [N(N − 1)r4+ 2]

<

∣∣∣∣ 1

(1+ r2)
2 (N − 2)(N − 3)(r4− r8)

+2(N − 2)

(1+ r2)
[2r2+ (N − 1)r6] + [2−N(N − 1)r4]

∣∣∣∣. (30)

Although the squeezing conditions (29) and (30) are difficult to analyse analytically for
general values ofN , it is still possible to analyse them analytically for some low values
of N . Let us first consider the caseN = 2. In this case, according to (29) and (30)
amplitude-squared squeezing takes place if

cos2 2θ >
(1+ r2)

2

2
or sin2 2θ >

(1+ r2)
2

2
if r < 1 (31)
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and

cos2 2θ >
(1+ r2)

2

2r4
or sin2 2θ >

(1+ r2)
2

2r4
if r > 1. (32)

Evidently the inequalities in (31) and (32) can be satisfied for many values ofr andθ . Thus
for N = 2 it is possible to have amplitude-squared squeezing.

We now consider the caseN = 4. In this case (29) and (30) give the following
conditions for squeezing:

cos2 2θ >
(r2+ 5)(r2+ 1)

10
or sin2 2θ >

(r2+ 5)(r2+ 1)

10
if r < 1 (33)

cos2 2θ >
(5r2+ 1)(r2+ 1)

10r4
or sin2 2θ >

(5r2+ 1)(r2+ 1)

10r4
if r > 1. (34)

It can be verified that, as in the caseN = 2, in this case the inequalities above can also be
satisfied for a number of values ofr and θ . Therefore we conclude that forN = 4 there
will also be amplitude-squared squeezing.

Finally we discuss, the antibunching effect for the coherent states. From (23) we find

g2 = (N − 1)[(N − 1)(N + 4r2)+ 2r4]

N(N + r2)
2 . (35)

ForN = 2 we obtain

g2 < 1⇒ −2r2 < 3 (36)

which is always true and thus the coherent states exhibit antibunching effects forN = 2.
We now considerN = 4. In this case we find

g2 < 1⇒ r2(r2+ 2) < 14. (37)

The inequality in (37) is satisfied for many values ofr and thus forN = 4 the coherent
states also exhibit antibunching effect.

Finally, we discuss theN →∞ limit. To examine (29), (30) and (35) in this limit it is
necessary to rescale the operatorsA as

√
NA and the complex numberµ asµ/

√
N . It can

be shown that asN → ∞ the inequalities (29) and (30) reduce to inequalities which do
not hold, while (35) becomes equal to one. This implies an absence of amplitude-squared
squeezing and antibunching in the infinite-dimensional limit.

4. Even and odd coherent states: their squeezing and antibunching properties

In this section we shall construct even and odd coherent states corresponding to the algebra
(11) and examine their quadrature squeezing, amplitude-squared squeezing and antibunching
properties. (We refer the reader to the appendix for the definition of the quantitiesai± and
other relevant results used in this section.)

The even coherent states are defined by (henceforth we shall takeN = 2d)

|µ〉e = Ne cosh(µA†)|0〉

= Ne

d∑
n=0

µ2n

(2n)!
(A†)

2n|0〉

= Ne

d∑
n=0

√
NC2nµ

2n|2n〉 (38)
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whereµ is a complex number and the normalization constantNe is determined from the
condition e〈µ|µ〉e = 1 and is given by

Ne =
[ d∑
n=0

(µµ̄)2n
]− 1

2

= (a0
+)
− 1

2 . (39)

The odd coherent states are defined by

|µ〉o = No sinh(µA†)|0〉

= No

d−1∑
n=0

√
NC2n+1µ

2n+1|2n+ 1〉 (40)

where the normalization constant is determined by the relationo〈µ|µ〉o = 1 and is given by

No =
[ d−1∑
n=0

√
NC2n+1(µµ̄)

2n

]− 1
2

= (a0
−)
− 1

2 . (41)

We shall now examine quadrature squeezing properties of the even and odd coherent
states defined in (38) and (40) respectively. From (20) and (21) it can be shown that even
coherent states are squeezed if

[a0
+ + 2(N − 1)r2a1

− ± 2(N − 1)(r2 cos 2θ − r4)a2
+] − 1

2|a0
+ − 2r2a1

−| < 0 (42)

and odd coherent states are squeezed if

[a0
− + 2(N − 1)r2a1

+ ± 2(N − 1)(r2 cos 2θ − r4)a2
−] − 1

2|a0
− − 2r2a1

+| < 0. (43)

As before we shall analyse the conditions (42) and (43) analytically forN = 2, 4. For
N = 2, the even coherent states will be squeezed if

cos 2θ > r2 or cos 2θ < −r2 if r < 1 (44)

and

cos 2θ >
1

r2
or cos 2θ < − 1

r2
if r > 1 (45)

while for N = 4 squeezing occurs if

cos 2θ < − r
2(r4+ 9)

3(r4+ 1)
or cos 2θ >

r2(r4+ 9)

3(r4+ 1)
if r < 1 (46)

and

cos 2θ < − (1+ 9r4)

3r2(1+ r4)
or cos 2θ >

(1+ 9r4)

3r2(1+ r4)
if r > 1. (47)

There are many values of r andθ for which the inequalities in (44)–(47) are satisfied and
thus the even coherent states exhibit quadrature squeezing for bothN = 2, 4.

Let us now consider the odd coherent states. ForN = 2, the squeezing conditions (43)
reduce to

r2 < 0 (48)

and forN = 4 these conditions are

cos 2θ < − (2+ 3r4)

3r2
or cos 2θ >

(2+ 3r4)

3r2
if r < 1 (49)

and

cos 2θ < − (3+ 2r4)

3r2
or cos 2θ >

(3+ 2r4)

3r2
if r > 1. (50)
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It can be verified that that the inequalities in (48)–(50) are not satisfied for anyr and θ .
Thus the odd coherent states do not exhibit quadrature squeezing forN = 2, 4.

Now we consider the limitN →∞. Using the same scaling as mentioned in section 3,
it can be shown that in the limitN →∞, (42) becomes

cos 2θ < − tanhr2 or cos 2θ > tanhr2 (51)

while (43) becomes

cos 2θ < − cothr2 or cos 2θ > cothr2. (52)

Thus asN → ∞, even coherent states exhibit quadrature squeezing while odd coherent
states do not show this effect [25, 26]. Next we examine whether or not the even/odd
coherent states exhibit amplitude-squared squeezing. From (21) we find that the even
coherent states will exhibit amplitude-squared squeezing if

(N − 2)(N − 3)a4
+(r

8+ 2r4 cos 4θ + r4)+ 2(N − 2)a3
−[2r2− (N − 1)r6]

+a2
+[2+N(N − 1)r4] − 4N2

eN(N − 1)a2
+r

4 cos2 2θ

< |(N − 2)(N − 3)a4
+(r

4− r8)+ 2(N − 2)[2r2+ (N − 1)r6]a3
−

+a2
+[2−N(N − 1)r4]| (53)

or

(N − 2)(N − 3)a4
+(r

8− 2r4 cos 4θ + r4)+ 2(N − 2)a3
−[2r2− (N − 1)r6]

+a2
+[2+N(N − 1)r4] − 4N2

eN(N − 1)a2
+r

4 sin2 2θ

< |(N − 2)(N − 3)a4
+(r

4− r8)+ 2(N − 2)[2r2+ (N − 1)r6]a3
−

+a2
+[2−N(N − 1)r4]|. (54)

ForN = 2 the above conditions become

cos2 2θ >
1+ r4

2
or sin2 2θ >

1+ r4

2
if r < 1 (55)

and

cos2 2θ >
1+ r4

2r4
or sin2 2θ >

1+ r4

2r4
if r > 1. (56)

Similarly for N = 4 we find

cos2 2θ >
r12+ 11r8+ 31r4+ 5

2(5r8+ 6r4+ 5)
or sin2 2θ >

r12+ 11r8+ 31r4+ 5

2(5r8+ 6r4+ 5)
if r < 1 (57)

and

cos2 2θ >
5r12+ 31r8+ 11r4+ 1

2r4(5r8+ 6r4+ 5)
or sin2 2θ >

r12+ 11r8+ 31r4+ 5

2(5r8+ 6r4+ 5)
if r > 1. (58)

Since the conditions in (55)–(58) can be satisfied for many values ofθ andr we conclude
that the even coherent states are amplitude-squared squeezed forN = 2, 4.

We now turn to the odd coherent states. The conditions for amplitude-squared squeezing
follows from (27) and are given by

(N − 2)(N − 3)a4
−(r

8+ 2r4 cos 4θ + r4)+ 2(N − 2)a3
−[r2− (N − 1)r6]

+N(N − 1)r4a2
− − 4N2

eN(N − 1)a2
−2r4 cos2 2θ

< |(N − 2)(N − 3)a4
−(r

4− r8)+ 2(N − 2)[r2− (N − 1)r6]a3
+

−N(N − 1)r4a2
−| (59)
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or

(N − 2)(N − 3)a4
−(r

8− 2r4 cos 4θ + r4)+ 2(N − 2)a3
+[r2− (N − 1)r6]

+N(N − 1)r4a2
+ − 4NN

o (N − 1)a2
−r

4 sin2 2θ

< |(N − 2)(N − 3)a4
−(r

4− r8)+ 2(N − 2)[r2− (N − 1)r6]a3
+

−N(N − 1)r4a2
−|. (60)

It can be shown that while forN = 2 there is no amplitude-squared squeezing, the conditions
for this to take place forN = 4 are given by

cos2 2θ >
1+ r4

2
or sin2 2θ >

1+ r4

2
if r < 1 (61)

and

cos2 2θ >
1+ r4

6r4
or sin2 2θ >

1+ r4

6r4
if r > 1. (62)

Since the inequalities in (61) and (62) can be satisfied for many values ofr and θ , we
conclude that odd coherent states exhibit amplitude-squared squeezing forN = 4. Finally
we discuss the antibunching effect for the even and odd coherent states. From (28) we find

ge =
(N − 1)2r4a2

+ − 2(N − 1)2(1− 2
N
)r6a3

− + (N − 1)(1− 2
N
)(N − 3)r8a4

+
N2

e |a0+ + (N − 2)r2a1− − (N − 1)r4a2+|2
(63)

go =
(N − 1)2r4a1

− − 2(N − 1)2(1− 2
N
)r4a3

+ + (N − 1)(1− 2
N
)(N − 3)r6a4

−
N2

o |Na1+ − (N − 1)r2a2−|2
. (64)

From (62) and (63) it can be shown that forN = 2 the even coherent states do not show
antibunching while the odd coherent states show this effect. On the other hand forN = 4,
both the even and the odd coherent states exhibit the antibunching effect.

Let us now discuss the limitN → ∞. It can be verified that asN → ∞ the r.h.s.
and l.h.s. of (53), (54) as well as of (59) and (60) become equal so that amplitude-squared
squeezing does not take place for either the even coherent states or the odd coherent states
[25, 26]. Also it can be shown that

ge = cothr2 > 1 asN →∞
go = tanhr2 < 1 asN →∞. (65)

Thus in the infinite-dimensional limit, the odd coherent states show antibunching effects
while the even coherent states do not [26].

From the results obtained here it is clear that the behaviour of the even and odd coherent
states in finite dimensions is quite different from those in infinite dimensions. For instance
the even coherent states exhibit amplitude-squared squeezing in finite dimensions but not
so in infinite dimensions. To understand the situation at a qualitative level we refer to the
work of Buzeket al [27]. From [27] we conclude that in this case nonclassical behaviour
shown by the even and odd coherent states is due to the quantum interference between
different coherent components of the superposition states. It may be noted that the quantum
interference between the components also depends on the dimensionN of the space. In
some of the cases nonclassical effects which are present at finite values ofN disappear as
N →∞. In other words the quantum interference vanishes in the limitN →∞.

5. Discussion

In this paper we have considered a harmonic oscillator in a finite-dimensional Hilbert space
and studied coherent states, even coherent states as well as odd coherent states corresponding
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to this system. The oscillator system considered here has a closed symmetry algebra related
to SU(2) algebra and the states of the oscillator are represented by Kravchuk polynomials.
Thus in contrast to [1–4], in this case the states of the oscillator exist in a finite-dimensional
space. Within this framework, we have studied various properties of the coherent states,
even and odd coherent states. It has been shown that the nonclassical properties (e.g.
squeezing, antibunching) of these states are rather different from the corresponding states
of the infinite-dimensional oscillator. In particular, we have obtained the following results:
(1) coherent states exhibit quadrature squeezing, amplitude-squared squeezing as well as
antibunching, (2) even coherent states exhibit quadrature and amplitude-squared squeezing
but no antibunching, (3) odd coherent states do not exhibit quadrature squeezing but they
show amplitude-squared squeezing forN = 4 and also antibunching. It has also been shown
that the finite-dimensional coherent states as well as the even and odd coherent states have
the correct limiting behaviour asN →∞. It may be noted that recently nonclassical states
of the harmonic oscillator have been engineered in experiments with trapped ions [28].
We hope that finite-dimensional counterparts of these states will be found in some future
experiments.
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Appendix

Here we shall list some results concerning the expectation values of various operators. First
we define

ai± =
(1+ r2)N−i ± (1− r2)N−i

2
i = 0, 1, 2, 3, 4. (A1)

Then

e,o〈µ|A2|µ〉e,o = N2
e,oµ

2N(N − 1)a2
± (A2)

e,o〈µ|A†2|µ〉e,o = N2
e,oµ̄

2N(N − 1)a2
± (A3)

e,o〈µ|AA†|µ〉e,o = N2
e,o[Na0

± +N(N − 2)(µµ̄)a1
∓ −N(N − 1)(µµ̄)2a2

±] (A4)

e,o〈µ|A†A|µ〉e,o = N2
e,o[N2(µµ̄)a1

∓ −N(N − 1)(µµ̄)2a2
±] (A5)

e,o〈µ|A4|µ〉e,o = N2
e,o

3∏
j=0

(N − j)µ4a4
± (A6)

e,o〈µ|A†4|µ〉e,o = N2
e,o

3∏
j=0

(N − j)µ̄4a4
± (A7)

e〈µ|A2A†2|µ〉e = N2
e [2Na2

∓ + 4N(N − 1)(N − 2)(µµ̄)a3
−

+N(N − 1)(N − 2)(N − 3)(µµ̄)2a4
+] (A8)

e〈µ|A2A†2|µ〉e = N2
o [2N(N − 1)(N − 2)(µµ̄)a3

+ +N(N − 1)(N − 2)(N − 3)(µµ̄)4a4
−]

(A9)

e,o〈µ|A†2A2|µ〉e,o = N2
e,o[N2(N − 1)2(µµ̄)2a2

± − 2N(N − 1)2(N − 2)(µµ̄)3a3
∓

+N(N − 1)(N − 2)(N − 3)(µµ̄)4a4
±]. (A10)
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